Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Antimicrob Agents ; 59(2): 106516, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1611755

RESUMEN

High concentrations of ivermectin demonstrated antiviral activity against SARS-CoV-2 in vitro. The aim of this study was to assess the safety and efficacy of high-dose ivermectin in reducing viral load in individuals with early SARS-CoV-2 infection. This was a randomised, double-blind, multicentre, phase II, dose-finding, proof-of-concept clinical trial. Participants were adults recently diagnosed with asymptomatic/oligosymptomatic SARS-CoV-2 infection. Exclusion criteria were: pregnant or lactating women; CNS disease; dialysis; severe medical condition with prognosis <6 months; warfarin treatment; and antiviral/chloroquine phosphate/hydroxychloroquine treatment. Participants were assigned (ratio 1:1:1) according to a randomised permuted block procedure to one of the following arms: placebo (arm A); single-dose ivermectin 600 µg/kg plus placebo for 5 days (arm B); and single-dose ivermectin 1200 µg/kg for 5 days (arm C). Primary outcomes were serious adverse drug reactions (SADRs) and change in viral load at Day 7. From 31 July 2020 to 26 May 2021, 32 participants were randomised to arm A, 29 to arm B and 32 to arm C. Recruitment was stopped on 10 June because of a dramatic drop in cases. The safety analysis included 89 participants and the change in viral load was calculated in 87 participants. No SADRs were registered. Mean (S.D.) log10 viral load reduction was 2.9 (1.6) in arm C, 2.5 (2.2) in arm B and 2.0 (2.1) in arm A, with no significant differences (P = 0.099 and 0.122 for C vs. A and B vs. A, respectively). High-dose ivermectin was safe but did not show efficacy to reduce viral load.


Asunto(s)
Antivirales/farmacocinética , Tratamiento Farmacológico de COVID-19 , Ivermectina/farmacocinética , SARS-CoV-2/efectos de los fármacos , Adulto , Antiparasitarios/sangre , Antiparasitarios/farmacocinética , Antiparasitarios/farmacología , Antivirales/sangre , Antivirales/farmacología , COVID-19/sangre , COVID-19/virología , Método Doble Ciego , Reposicionamiento de Medicamentos , Femenino , Humanos , Ivermectina/sangre , Ivermectina/farmacología , Masculino , Persona de Mediana Edad , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Resultado del Tratamiento , Carga Viral/efectos de los fármacos
2.
Pharmacol Res Perspect ; 9(1): e00712, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1482163

RESUMEN

Mass drug administration of ivermectin has been proposed as a possible malaria elimination tool. Ivermectin exhibits a mosquito-lethal effect well beyond its biological half-life, suggesting the presence of active slowly eliminated metabolites. Human liver microsomes, primary human hepatocytes, and whole blood from healthy volunteers given oral ivermectin were used to identify ivermectin metabolites by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. The molecular structures of metabolites were determined by mass spectrometry and verified by nuclear magnetic resonance. Pure cytochrome P450 enzyme isoforms were used to elucidate the metabolic pathways. Thirteen different metabolites (M1-M13) were identified after incubation of ivermectin with human liver microsomes. Three (M1, M3, and M6) were the major metabolites found in microsomes, hepatocytes, and blood from volunteers after oral ivermectin administration. The chemical structure, defined by LC-MS/MS and NMR, indicated that M1 is 3″-O-demethyl ivermectin, M3 is 4-hydroxymethyl ivermectin, and M6 is 3″-O-demethyl, 4-hydroxymethyl ivermectin. Metabolic pathway evaluations with characterized cytochrome P450 enzymes showed that M1, M3, and M6 were produced primarily by CYP3A4, and that M1 was also produced to a small extent by CYP3A5. Demethylated (M1) and hydroxylated (M3) ivermectin were the main human in vivo metabolites. Further studies are needed to characterize the pharmacokinetic properties and mosquito-lethal activity of these metabolites.


Asunto(s)
Antiparasitarios/farmacocinética , Ivermectina/farmacocinética , Administración Oral , Antiparasitarios/sangre , Antiparasitarios/farmacología , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Desmetilación , Hepatocitos/metabolismo , Humanos , Hidroxilación , Ivermectina/sangre , Ivermectina/farmacología , Redes y Vías Metabólicas , Microsomas Hepáticos/metabolismo
3.
Antimicrob Agents Chemother ; 64(9)2020 08 20.
Artículo en Inglés | MEDLINE | ID: covidwho-654170

RESUMEN

Previously, ivermectin (1 to 10 mg/kg of body weight) was shown to inhibit the liver-stage development of Plasmodium berghei in orally dosed mice. Here, ivermectin showed inhibition of the in vitro development of Plasmodium cynomolgi schizonts (50% inhibitory concentration [IC50], 10.42 µM) and hypnozoites (IC50, 29.24 µM) in primary macaque hepatocytes when administered as a high dose prophylactically but not when administered in radical cure mode. The safety, pharmacokinetics, and efficacy of oral ivermectin (0.3, 0.6, and 1.2 mg/kg) with and without chloroquine (10 mg/kg) administered for 7 consecutive days were evaluated for prophylaxis or radical cure of P. cynomolgi liver stages in rhesus macaques. No inhibition or delay to blood-stage P. cynomolgi parasitemia was observed at any ivermectin dose (0.3, 0.6, and 1.2 mg/kg). Ivermectin (0.6 and 1.2 mg/kg) and chloroquine (10 mg/kg) in combination were well-tolerated with no adverse events and no significant pharmacokinetic drug-drug interactions observed. Repeated daily ivermectin administration for 7 days did not inhibit ivermectin bioavailability. It was recently demonstrated that both ivermectin and chloroquine inhibit replication of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro Further ivermectin and chloroquine trials in humans are warranted to evaluate their role in Plasmodium vivax control and as adjunctive therapies against COVID-19 infections.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Ivermectina/farmacología , Hígado/efectos de los fármacos , Malaria/tratamiento farmacológico , Plasmodium cynomolgi/efectos de los fármacos , Animales , Antimaláricos/sangre , Antimaláricos/farmacocinética , Disponibilidad Biológica , Cloroquina/sangre , Cloroquina/farmacocinética , Esquema de Medicación , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/parasitología , Ivermectina/sangre , Ivermectina/farmacocinética , Hígado/parasitología , Macaca mulatta , Malaria/parasitología , Masculino , Parasitemia/tratamiento farmacológico , Plasmodium cynomolgi/crecimiento & desarrollo , Plasmodium cynomolgi/patogenicidad , Cultivo Primario de Células , Esquizontes/efectos de los fármacos , Esquizontes/crecimiento & desarrollo
4.
J Pharm Sci ; 109(12): 3574-3578, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-745903

RESUMEN

SARS-CoV-2 utilizes the IMPα/ß1 heterodimer to enter host cell nuclei after gaining cellular access through the ACE2 receptor. Ivermectin has shown antiviral activity by inhibiting the formation of the importin-α (IMPα) and IMPß1 subunits as well as dissociating the IMPα/ß1 heterodimer and has in vitro efficacy against SARS-CoV-2. Plasma and lung ivermectin concentrations vs. time profiles in cattle were used to determine the apparent plasma to lung tissue partition coefficient of ivermectin. This coefficient, together with a simulated geometric mean plasma profile of ivermectin from a published population pharmacokinetic model, was utilized to develop a minimal physiologically-based pharmacokinetic (mPBPK) model. The mPBPK model accurately described the simulated ivermectin plasma concentration profile in humans. The mPBPK model was also used to simulate human lung exposure to ivermectin after 12, 30, and 120 mg oral doses. The simulated ivermectin lung exposures reached a maximum concentration of 772 ng/mL, far less than the estimated 1750 ng/mL IC50 reported for ivermectin against SARS-CoV-2 in vitro. Further studies of ivermectin either reformulated for inhaled delivery or in combination with other antivirals with differing mechanisms of action is needed to assess its therapeutic potential.


Asunto(s)
Antivirales/farmacocinética , Infecciones por Coronavirus/tratamiento farmacológico , Ivermectina/farmacocinética , Pulmón/metabolismo , Neumonía Viral/tratamiento farmacológico , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/sangre , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/metabolismo , COVID-19 , Bovinos , Simulación por Computador , Infecciones por Coronavirus/metabolismo , Reposicionamiento de Medicamentos , Humanos , Ivermectina/administración & dosificación , Ivermectina/sangre , Ivermectina/farmacología , Modelos Biológicos , Pandemias , Neumonía Viral/metabolismo , SARS-CoV-2
5.
Clin Pharmacol Ther ; 108(4): 762-765, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-197817

RESUMEN

Caly et al.1 reported that ivermectin inhibited severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) in vitro for up to 48 hours using ivermectin at 5 µM. The concentration resulting in 50% inhibition (IC50 ; 2 µM) was > 35× higher than the maximum plasma concentration (Cmax ) after oral administration of the approved dose of ivermectin when given fasted. Simulations were conducted using an available population pharmacokinetic model to predict total (bound and unbound) and unbound plasma concentration-time profiles after a single and repeat fasted administration of the approved dose of ivermectin (200 µg/kg), 60 mg, and 120 mg. Plasma total Cmax was determined and then multiplied by the lung:plasma ratio reported in cattle to predict the lung Cmax after administration of each single dose. Plasma ivermectin concentrations of total (bound and unbound) and unbound concentrations do not reach the IC50 , even for a dose level 10× higher than the approved dose. Even with the high lung:plasma ratio, ivermectin is unlikely to reach the IC50 in the lungs after single oral administration of the approved dose (predicted lung: 0.0873 µM) or at doses 10× higher that the approved dose administered orally (predicted lung: 0.820 µM). In summary, the likelihood of a successful clinical trial using the approved dose of ivermectin is low. Combination therapy should be evaluated in vitro. Repurposing drugs for use in coronavirus disease 2019 (COVID-19) treatment is an ideal strategy but is only feasible when product safety has been established and experiments of repurposed drugs are conducted at clinically relevant concentrations.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Ivermectina/administración & dosificación , Modelos Biológicos , Neumonía Viral/tratamiento farmacológico , Administración Oral , Adulto , Animales , COVID-19 , Bovinos , Infecciones por Coronavirus/sangre , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Ivermectina/sangre , Masculino , Pandemias , Neumonía Viral/sangre , SARS-CoV-2 , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA